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SUMMARY

Numerical analysis is carried out to investigate viscous �ow over a travelling wavy plate undergoing
lateral motion in the form of a streamwise travelling wave, which is similar to the backbone undula-
tion of swimming �sh. The two-dimensional incompressible Navier–Stokes equations are solved using
the �nite element technique with the deforming-spatial-domain=stabilized space–time formulation. The
objective of this study is to elucidate hydrodynamic features of �ow structure and vortex shedding near
the travelling wavy plate and to get into physical insights to the understanding of �sh-like swimming
mechanisms in terms of drag reduction and optimal propulsive performance. The e�ects of some typical
parameters, including the phase speed, amplitude, and relative wavelength of travelling wavy plate, on
the �ow structures, the forces, and the power consumption required for the propulsive motion of the
plate are analysed. These results predicted by the present numerical analysis are well consistent with
the available data obtained for the wave-like swimming motion of live �sh in nature. Copyright ? 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

A bio�uiddynamics of �sh locomotion was founded by Lighthill with a theory for evaluating
reactive forces between an undulating �sh body and the water surrounding it [1, 2]. Further
development of the subject was carried out and comprehensive reviews of relevant work can
be found in References [3–6]. To better explore the swimming ability of these live, the wave-
like swimming and �apping motions of the body are used as essential models to deal with
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the propulsion of �sh. Previously researchers have shown the ability of the caudal �n of a
�sh to produce a jet-like wake similar to that of a �apping foil [7–11]. While the undulating
body motions produce the locomotion, it is not yet clear exactly how the body undulating
motion e�ects the �ow very near a �sh or a travelling wave plate.
Usually, �sh use predominant oscillatory movements [12]. Gray noted that �sh swimming

movement could be mainly described as a combination of two wave-like phenomena [13].
One is cyclic change of the curved shape of the body showing a lateral wave of curvature
running in the caudal direction, and the other is every single point of the body performing, in
consequence of the wave of lateral curvature on the body, a sinusoidal track in a horizontal
plane. Thus, a travelling wavy plate problem is of interest parallel to the swimming �sh,
since the backbone motion of �sh species is essentially similar to that of the travelling wave.
This simple model is appropriate for anguilliform, subcarangiform, and carangiform swimmers
[14–16].
Fish swimming can be very instructive in disclosing mechanisms of unsteady �ow control,

which was raised �rst in the relation to swimming of live �sh. Gray [17] observed that an
actively swimming dolphin only consumes one seventh of the energy needed to tow a rigid
body at the same speed, and suggested that substantial drag reduction must occur in the live
dolphin. Then, much work has been performed to explore this problem. Important contribu-
tions by Lighthill [1, 2] and Wu [18, 19] have shed light on the inviscid hydrodynamics of
�sh-like propulsion. Cheng et al. [20] analysed the swimming propulsion mechanism of a
three-dimensional plate moving in an inviscid �uid. Furthermore, Harper and Blake [21, 22]
reported experimentally the outstanding performance by �sh and led to interest in �sh-like
vehicles capable of emulating the high performance of �sh propulsion and maneuvering. Bar-
rett et al. [23] found that the power required to propel a swimming body may be
smaller than that needed to tow a straight-rigid body.
It has been proposed that the travelling wave motions result in reducing drag force and

increasing propulsive e�ciency by restraining separation [24–26]. Viscous �ow past a travel-
ling wavy wall, in which the wall wavy displacements propagate in the streamwise direction,
di�ers from the �ow near a �xed wavy wall. The �ow over the wavy wall is strongly a�ected
by surface normal pressure gradient and centrifugal force due to alternating convex and con-
cave curvatures. The e�ects of a surface normal pressure gradient are evident as the �ow
over a rotationally oscillating cylinder, in which �ow separation can be reduced as observed
experimentally by Tokumaru and Dimotakis [27], and numerically by Lu and Sato [28] and
Lu [29]. Experiments were undertaken to investigate viscous �ow past a travelling wavy wall.
Taneda and Tomonari [30] observed that the boundary layer separates at the back of the
wave crest for the travelling wave phase speed being smaller than the external �ow velocity,
but the boundary layer does not separate for the wave phase speed being larger than the
external �ow velocity. Kendall [31] investigated the e�ect of a travelling wavy wall on �ow
behaviour. Numerical simulations [32, 33] have been carried out for viscous �ow over a �xed
wavy surface and con�rmed the previous experimental measurements.
To understand �sh swimming propulsion, it is needed to study two typical problems which

consist of the nature of the force resisting the motion and the mechanisms that lead to the thrust
force [25, 26]. Here, computational �uid dynamics is applied to investigate viscous �ow over
a travelling wavy plate undergoing lateral motion in the form of a streamwise travelling wave.
To the best of our knowledge, the relevant problem has never been examined. Meanwhile,
we recognize the somewhat limitation of this model for modelling �sh swimming; however,
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still feel that the results will be of fundamental use in exploring the hydrodynamic feature of
the �ow near the travelling wavy plate and in getting into physical understanding of �sh-like
swimming mechanisms.
This paper is organized as follows. The physical problem and mathematical formulations

are described in Section 2. The numerical method and its validation are brie�y given in
Section 3. In Section 4, the �ow structures, forces and power consumption are discussed.
Finally, concluding remarks are summarized in Section 5.

2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

As shown in Figure 1(a), viscous �ow over a moving plate undergoing a travelling wave
motion is considered. The two-dimensional incompressible Navier–Stokes equations are
employed as governing equations. To non-dimensionalize the equations, the length of the
wavy plate L is used as the length scale, and the free-stream velocity U as the velocity scale.
Then, the non-dimensional equations are given as

@ui
@xi

=0 (1)

@ui
@t
+
@
@xj
(uiuj) =−@p

@xi
+
1
Re

∇2ui (2)

where Re is the Reynolds number de�ned as Re=UL=� with � being the kinematic viscosity.
The pressure p is normalized by �U 2 where � is the �uid density.
The wavy plate is taking a vertical oscillation in the form of a wave travelling in the

streamwise direction, and the non-dimensional position of the wall is described as

yw =Am(x) cos[2��(x − ct)]; 06x61 (3)

where �=L=� with � being the wavelength of travelling wave, Am and c are the amplitude
and the phase speed of travelling wave, and subscript w denotes the quantity on the wall.
Note that the amplitude Am(x) is a function of x (06x61). Here, two typical cases are

considered. One is the travelling wavy plate with uniform amplitude, i.e. the amplitude being
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Figure 1. (a) Sketch of the physical problem; and (b) the amplitude distributions Am(x) based on the
kinematic data of a steadily swimming saithe.
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independent of x

Am(x)= constant (4a)

and the other is the amplitude varying with x. To model the backbone undulation of �sh
swimming [34], the amplitude Am(x) is approximated to be in the form of quadratic polynomial
and written as

Am(x)=C0 + C1x + C2x2 (4b)

where C0, C1 and C2 are coe�cients and can be determined by the following conditions:

Am(0)=0:02; Am(0:2)=0:01 and Am(1)=0:1 (4c)

It is necessary to indicate that those three typical points are cited from the kinematic data of a
steadily swimming saithe [34]. The amplitude Am(x) is plotted in Figure 1(b) and reasonably
represents the lateral motion of the backbone undulation of �sh swimming.
In the present study, an inertia frame is chosen. The travelling wavy plate is treated as

a moving boundary. On the surface of the plate, �uid elements move with the travelling
wavy plate described in Equation (3), and @ui=@n=0 is employed on the upper and lower
far-boundary with n being the unit vector normal to the boundary. Uniform �ow is set on the
in�ow boundary, and the normal and shear stress are speci�ed to be zero at the downstream
out�ow boundary.

3. NUMERICAL METHOD AND VALIDATION

To deal with the moving plate and the deformation of the mesh, the space–time �nite element
formulation, which is described in detail in Reference [35], is used in the present study. To
ensure the computation stability, the series of element-level integrals are added to the con-
ventional Galerkin formulation as the least-squares terms. This type of stabilization is referred
to as the Galerkin=least-squares (GLS) procedure and is a generalization of the streamline-
upwind=Petrov–Galerkin (SUPG) [36] and pressure-stabilization=Petrov–Galerkin (PSPG) [37].
Equal-in-order basis functions for the velocity and pressure, which are bilinear in space and
linear in time, are used, and the Gaussian quadrature is employed for numerical integration
[38]. The nonlinear equations resulting from the �nite-element discretization of the equations
are solved by Newton–GMRES method [39].
In the present study, to adapt the travelling wavy plate, the deformation of mesh is used.

As shown in Figure 1(a), the computational domain is from −1 to 15 along the longitudinal
(or streamwise) direction (i.e. x-direction) and −4 to 4 along the transverse direction (i.e.
y-direction). The element number is around 2× 104 and the time step is 0.005.
Extensive convergence checks have been taken in our previous work [40, 41]. As a typical

case, Figure 2 shows the distributions of the pressure and vorticity over the upper surface of
the wavy plate at t=T =0 and 1=4, and the time-dependent drag and lateral force coe�cients,
calculated by di�erent element numbers, time steps and domain sizes. The results obtained
by di�erent computational conditions agree well with each other. It can be con�rmed that the
computed results are independent of the time step, the grid size and the computational domain
size.
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Figure 2. Validation for a travelling wavy plate with uniform amplitude at c=1:5, �=1, Am=0:3
and Re=500: Distributions of the pressure and vorticity over the upper surface of the wavy plate at:
(a) t=T =0; and (b) 1=4; and (c) the time-dependent drag and lateral force coe�cients. Solid lines:
element number around 2× 104, time step 0.005, domain [−1; 15] in the x-direction and [−4; 4] in the
y-direction; dashed lines: element number around 4:8× 104, time step 0.0025, domain [−2; 25] in the

x-direction and [−6; 6] in the y-direction.

4. RESULTS AND DISCUSSION

To investigate systematically the mechanism of propulsive performance and vortex shedding
of a travelling wavy plate, the parameters are chosen as follows. The phase speed c ranges
from 0.5 to 2.5. The ratio of the length of wavy plate and the travelling wavelength �=L=�
is 0.8–1.2. The uniform amplitude Am in Equation (4a) is from 0.03 to 0.3; and the non-
uniform amplitude given by Equation (4b) with the maximum trailing-edge amplitude 0.1 is
shown in Figure 1(b). According to the relevant work on the motion of an aquatic animal at
intermediate Reynolds numbers (i.e. Re ∼ O(102)) [42], the Reynolds number is chosen as
500.

4.1. Forces and power consumption for di�erent phase speeds

The drag force acting on the wavy plate and the power needed for it to be propelled are
directly relevant to the study of �sh locomotion. The total drag force on the wavy plate
consists of a friction drag and a form drag due to pressure distribution. In Figure 1(a), for
an element of the plate along its upper side ds=[1 + (dyw=dx)2]1=2, its tangential direction
is t=(1; dyw=dx)=ds and the wall-normal direction is n=(−dyw=dx; 1)=ds. Then, the friction
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force and the pressure force per unit length along the wavy plate can be expressed as [25, 26]
⎧⎪⎪⎨
⎪⎪⎩
ffx =

1
Re

[
−2 @u

@x
dyw
dx

+
(
@v
@x
+
@u
@y

)]

fpx =p
dyw
dx

on y=y+w (5a)
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ffx =

1
Re

[
2
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dyw
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−
(
@v
@x
+
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@y

)]

fpx = − p dyw
dx

on y=y−
w (5b)

where y+w and y
−
w represent the upper and lower surface of the wavy plate, respectively. By

performing integration of ffx and f
p
x over both the side of plate, the friction force Ff , the

pressure force Fp, and the total drag force Fd =Ff + Fp can be obtained. The corresponding
drag coe�cients are de�ned as

CDF =
Ff

1=2�U 2L
; CDP =

Fp
1=2�U 2L

; CD =
Fd

1=2�U 2L
(6)

Based on the de�nition [25, 26], the total power (PT) required for the propulsive motion of
the wall consists of two parts. One is the swimming power, required to produce the vertical
oscillation of travelling wave motion, and is de�ned as

PS =
∫ L

0

[
(p+ − p−)

dyw
dt

]
dx (7)

where p+ and p− are the pressure on the upper and lower surface of the plate. The other
is the power, needed to overcome the drag force, and is represented as PD =UFd. Thus, the
total power PT =PS + PD is obtained.
The time-averaged drag force versus c at Am=0:1 and �=1 is shown in Figure 3(a). With

the increase of c, the time-averaged form drag coe�cient ( �CDP) and total drag coe�cient
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Figure 3. Time-averaged drag force and power consumption versus c at Am=0:1 and �=1: (a) drag
force acting on the travelling wavy plate; and (b) power required to propel the wavy plate.
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( �CD) decrease, and the friction drag coe�cient ( �CDF) increases somewhat. It is noted that �CDP
becomes negative and acts as thrust force when c¿1 approximately, and �CD gets negative
when c¿2 approximately. This behaviour is consistent with previous �ndings for viscous �ow
over a streamwise travelling wavy wall [25, 26].
The distributions of PT, PS and PD are shown in Figure 3(b). As c increases, PS increases

and becomes positive for c¿1 approximately. The negative value of PS means that the wavy
plate motion can be actuated by the �ow and no power input is needed. The power to
overcome the drag force, PD, decreases monotonically with c, because of the similar decrease
of �CD, as shown in Figure 3(a). When PD is negative, it means that the wavy plate is
propelled by the thrust; however, the thrust is at the expense of the swimming power PS
required to produce the plate motion. PD and PS present the competing mechanisms. The
distribution of total power PT versus c is concave upwards with a minimum around c=1:2,
which is consistent with the value used for travelling wave-like swimming motion of live �sh
in nature [43, 44].
To elucidate the behaviour of time-dependent drag forces, Figure 4 shows the drag

coe�cients for several phase speeds at Am=0:1. It is needed to indicate that, based on our
calculated results, periodic results are obtained for all the cases considered here. Thus, to
clearly exhibit time-dependent drag forces, the results during one cycle are only shown in
Figure 4. It is noted that the time-dependent friction drag is nearly constant during the cycle;
the time-dependent form drag is always positive at c=0:5 and 0.8 in Figures 3(a) and (b),
and becomes alternately positive and negative for c¿1. When the form drag becomes nega-
tive, it acts as a thrust force. The form drag plays an essential role for the propulsion of the
travelling wavy plate.
It is reasonably predicted that two peaks of time-dependent drag force are generated during

one cycle, because two vortices with opposite sign shed into the wake of the plate and the
corresponding vorticity structures are shown later. Further, by examining the time (or phase)
corresponding to the peak of form drag CDP marked by ‘×’ in Figure 4, the pro�le of the time
(or phase) versus c is obtained and exhibited in Figure 5. It is interesting to note that the time
(or phase) has a sharp change from t=T =0:4 (or phase �=4�=5) when c¡1 approximately
to t=T =0:6 (or �=6�=5) when c¿1. This feature is consistent with the variation of �CDP in
Figure 3(a), where �CDP changes from positive for c¡1 approximately to negative for c¿1.
Time-dependent lateral force coe�cient (CL) and the root-mean-square (rms) values of

drag and lateral force (i.e. CDrms and CLrms) are shown in Figures 6(a) and 6(b). When c
increases, the amplitude of time-dependent CL increases in Figure 6(a), and the corresponding
CLrms increases in Figure 6(b). However, note that CDrms reaches a minimum at c=1; CDrms
decreases somewhat for c increasing from 0.5 to 1, and increases quickly for c increasing
from 1 to 2.5.

4.2. Flow structures for di�erent phase speeds

To elucidate the e�ect of c on the form drag force, Figure 7 shows the pressure contours
for several phase speeds. At c=0:5 (in Figure 7(a)), lower pressure distribution along the
wavy plate of the right side of the crest appears; thus the form drag is always positive during
the cycle shown in Figure 4(a). When c¿1 approximately, the pressure patterns exhibit a
remarkable change. It is noted that larger pressure distribution appears over the trough region
and lower pressure over the crest region. The form drag varies with positive and negative
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Figure 4. Time-dependent friction drag (CDF), form drag (CDP) and total drag (CD) for Am=0:1 and
�=1 with several phase speeds: (a) c=0:5; (b) 0.8; (c) 1.0; (d) 1.2; (e) 1.5; and (f) 2.0.

values during the cycle, e.g. c=1:5 and 2 in Figures 4(e) and 4(f). Thus, it is reasonably
predicted that the time-averaged form drag ( �CDP) decreases with the increase of c and becomes
negative for c¿1 in Figure 3(a), and the time (or phase) corresponding to the peak of form
drag exhibits a jump around c=1 in Figure 5.
The corresponding instantaneous streamline patterns are shown in Figure 8. As the wavy

plate is travelling in the streamwise direction, the plate boundary is no longer a streamline
and there are streamlines that emanate from the plate and end on the plate. As the plate
waving motion, the right side of the crest rises and the left side descends, and the vertical
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�ow induced increases with the increase of c. As a result, while the streamlines above the
trough are concave at c=0:5, they become �at at c=1 approximately and even convex at
c=1:5 and 2. It is well known that the �ow over the wavy plate is strongly a�ected by
surface normal pressure gradient and centrifugal force due to alternating convex and concave
curvatures. Thus, the convex streamlines over the trough at c=1:5 and 2 in Figures 8(c)
and 8(d) agree reasonably with the larger pressure distributions over the trough region in
Figures 7(c) and 7(d). The surface normal pressure gradient increases with c. As the lat-
eral force is contributed mainly by the pressure distribution, it is reasonably noted that the
amplitude of time-dependent CL increases and the corresponding CLrms increases in Figure 6.
The plate travelling wave motion tends to suppress �ow separation along the plate. As

well studied, the e�ects of a surface normal pressure gradient are evident as the �ow over
a rotationally oscillating cylinder, in which �ow separation can be reduced as veri�ed ex-
perimentally by Tokumaru and Dimotakis [27], and numerically by Lu and Sato [28] and
Lu [29]. Thus, as described above, the e�ect of the surface normal pressure gradient when
c¿1 approximately is a mechanism for the suppression of �ow separation along the plate, in
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Figure 7. Instantaneous pressure contours for Am=0:1 and �=1 at t=T =0=4 (left column) and 1=4
(right column): (a) c=0:5; (b) 1.0; (c) 1.5; and (d) 2.0.

particular in the region of the crest. Based on our results and previous �ndings [25, 26], it
is con�rmed that the �ow separation over a travelling wavy wall is e�ectively restrained for
c¿1.
To understand propulsive performance of the travelling wavy plate, vortex structures in

the near wake of the plate are discussed. Unlike previous work for in�nite travelling wall
[25, 26, 31–33], we can deal with the vortex structures in the near wake of the plate. Figure 9
shows the vorticity contours at c=0:5 during one cycle. The shear layer is generated along the
plate and rolls up to form concentrated vortices behind the crest. Then, the vortices gradually
shed into the downstream to form vortices array, similar to classic Karman vortex-street in the
near wake of the travelling wavy plat. It is noted that two vortices with opposite sign shed
downstream during one cycle. By comparing the vorticity structures between t=T =0=4 and
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Figure 8. Instantaneous streamline patterns for Am=0:1 and �=1 at t=T =0=4 (left column) and 1=4
(right column): (a) c=0:5; (b) 1.0; (c) 1.5; and (d) 2.0.

2=4 (and between t=T =1=4 and 3=4) in Figure 9, as expected, the patterns appear reasonably
antisymmetric.
Figure 10 shows the vorticity contours at t=T =0=4 and 1=4 for several phase speeds. With

the increase of c, the scale of shedding vortex and the lateral width of the vortices array in
the near wake decrease gradually, even a vortex-street ranking near as one line at c=2 and
2.5. It is also observed that the vortex-street can keep its structure up to a long distance in the
downstream of the plate at c=0:5 and 0.8. However, when c¿1, the vortex-street dissipates
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Figure 9. Vorticity contours for c=0:5, Am=0:1 and �=1 during one cycle:
(a) t=T =0=4; (b) 1=4; (c) 2=4; and (d) 3=4.

quickly and even disappears nearly, e.g. for x¿3:5 approximately at c=1:2, x¿2:5 at c=2,
and x¿2 at c=2:5. Thus, it is reasonably identi�ed that the vortex-street shed from the plate,
which takes a travelling wave motion, tends to be dissipated e�ectively with the increase of c.
This behaviour is consistent with the decrease of the drag force shown in Figure 3a.

4.3. E�ect of amplitude on forces, power consumption and �ow structures

To deal with the e�ect of the amplitude of travelling wavy plate on the forces and �ow
structures, the travelling wavy plate with uniform amplitude is considered. Here, some
typical results are analysed for c=1:5, because the phase speed value employed for trav-
elling wave-like swimming motion of live �sh in nature is c=1:2–1.5
approximately [34, 43].
Figure 11 shows the time-averaged drag force and power for c=1:5 and �=1. When Am

increases, �CDF increases somewhat, �CDP and �CD decrease in Figure 11(a). It is noted that
�CD becomes negative around Am=0:2. As shown in Figure 11(b) for PT, PS and PD, when
Am increases, PS and PT increase and PD decreases. At larger amplitude, e.g. at Am=0:3,
PD becomes negative; it means that the wavy plate is propelled by the thrust. However,
the thrust is at the expense of the swimming power PS required to produce the wavy plate
motion. On the other hand, at smaller amplitude, e.g. at Am=0:05, it is noted that, although
the swimming power PS is small, the form drag hardly produces enough thrust force at small
Am. Thus, it is reasonably proposed that there exist optimal amplitudes to generate a high
propulsive e�ciency for the travelling wavy plate [26]. As shown in Figure 11(c) for the rms
values of drag and lateral force, it is reasonably predicted that CDrms and CLrms increase with
the increase of Am.
Figure 12 shows the instantaneous streamline patterns and pressure contours at Am=0:05

and 0.2. The vertical �ow induced by the plate waving motion increases with the increase
of Am. It is evident that, comparing with the patterns at Am=0:05, the streamlines above the
trough become remarkably convex at Am=0:2. Thus, in Figures 11(b) and 11(d), the surface
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Figure 10. Vorticity contours for Am=0:1 and �=1 at t=T =0=4 (left column) and 1=4 (right column):
(a) c=0:8; (b) 1.0; (c) 1.2; (d) 1.5; (e) 2.0; and (f) 2.5.
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Figure 11. Time-averaged drag force and power consumption, and the rms values of drag and lateral
forces at c=1:5 and �=1: (a) drag force; (b) power consumption; and (c) CDrms, CLrms.

normal pressure gradient increases with Am to balance the centrifugal force induced by the
convex streamlines over the trough.

4.4. E�ect of relative wavelength on forces, power consumption and �ow structures

The e�ect of the relative wavelength, which can be represented by the ratio between the
length of the wavy plate and the travelling wavelength (i.e. �=L=�), on the forces and �ow
structures is studied. The relative wavelength � is typically chosen as 0.8 to 1.2 for the
travelling wavy plate with uniform amplitude.
The time-averaged drag force and power versus � are shown in Figure 13. As � increases,

�CDF increases, �CDP decreases, and �CD decreases somewhat in Figure 13(a); Ps increases,
Pd decreases, and PT increases in Figure 13(b). The changes of the drag force and power
induced by �, compared to these caused by the phase speed c and the amplitude Am in Figures
3 and 11, are relatively small. The rms values of drag and lateral force are shown in Figure
13(c). As � increases from 0.8 to 1.2, CLrms decreases monotonically; however, CDrms appears
a maximum at �=1.
Figure 14 shows the streamline patterns and pressure contours for �=0:8 and 1.2. At

t=T =0=4, two wave troughs are formed at x=0:415 (viewing on the upper side of the plate)
and 0.83 (on the lower side) approximately for �=1:2, but only one wave trough on the upper
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Figure 12. Instantaneous streamlines and pressure contours for c=1:5 and �=1 at t=T =0=4 (left
column) and 1=4 (right column): (a) streamlines at Am=0:05; (b) pressure contours at Am=0:05;

(c) streamlines at Am=0:2; and (d) pressure contours at Am=0:2.

side of the plate appears at x=0:625 for �=0:8. As the e�ect of the surface normal pressure
gradient, the larger pressure distributions over the trough region occur, as shown in Figures
14(b) and 14(d). The lateral force is mainly contributed by the pressure and is closely related
to the pressure distributions over both the sides of the plate. Thus, the pressure distributions
on both the sides of the plate are e�ectively balanced at �=1:2, caused that CLrms quickly
decreases with � in Figure 13(c).
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Figure 13. Time-averaged drag force and power consumption, and the rms values of drag and lateral
forces at c=1:5 and Am=0:1: (a) drag force; (b) power consumption; and (c) CDrms, CLrms.

4.5. E�ect of non-uniform amplitude on forces, power consumption and �ow structures

Based on the kinematic data of steadily swimming �sh, the backbone undulation of �sh
swimming is physically described by travelling waves of lateral curvature with increasing
amplitude. Therefore, the e�ect of non-uniform amplitude on the forces and �ow structures is
analysed. The amplitude Am(x) is shown in Figure 1(b), where the amplitude at the trailing-
edge of the plate (i.e. at x=1) is 0.1.
Figure 15 shows the time-averaged drag force and power consumption. When c increases,

�CDP and �CD decrease, and �CDF increases. In Figure 15(a), �CDP becomes negative and acts as
thrust force when c¿0:8 approximately. Comparing with Figure 3(a), it is noted that �CDP for
non-uniform amplitude is smaller than that for uniform amplitude in Figure 3(a) at the same
c. Thus, it is reasonably predicted that the travelling wavy plate with non-uniform ampli-
tude is helpful to generate e�ectively a thrust. Actually, the travelling waves with increasing
amplitude are a typical form adopted for travelling wave-like swimming motion of live �sh
in nature.
As shown in Figure 15(b), when c increases, PS increases. PS becomes positive for c¿0:8

approximately. The power to overcome the drag force, PD, decreases monotonically with c.
The distribution of PT versus c is concave upwards with a minimum around c=1:2. The
rms values of drag and lateral force are exhibited in Figure 15(c). When c increases, CLrms
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Figure 14. Instantaneous streamlines and pressure contours for c=1:5 and Am=0:1 at t=T =0=4 (left
column) and 1=4 (right column): (a) streamlines at �=0:8; (b) pressure contours at �=0:8; (c) stream-

lines at �=1:2; and (d) pressure contours at �=1:2.

increases and CDrms reaches a minimum at c=1. Comparing with the values for uniform
amplitude in Figure 6(b), CDrms and CLrms for non-uniform amplitude are relatively small for
the same c.
The streamline and pressure patterns are shown in Figures 16 and 17, respectively, for

several phase speeds at t=T =0=4 and 1=4. As the wavy plate is travelling in the x-direction
with increasing amplitude, the vertical �ow induced by the plate waving motion increases
with x. Based on the analysis described above, the rear part of the travelling wavy plate thus
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Figure 15. Time-averaged drag force and power consumption, and the rms
values of drag and lateral forces for the travelling wavy wall with non-uniform
amplitude: (a) drag force; (b) power consumption; and (c) CDrms, CLrms.

plays an important role for propulsive performance and vortex shedding. It is evident that
the �ow structure exhibits remarkable change for di�erent phase speeds. The corresponding
vortex structures in the near wake of the plate are also examined and have a similar behaviour
shown in Figure 10.

4.6. Comparison between the travelling wavy plate and �sh swimming

To clarify the wavy motions characterizing steady undulatory swimming in �sh, Videler [12]
proposed some simple models to analyse the �sh-like swimming motions. As an extension
of the kinematics analysis, as carried out in the present study, the undulating wave motion,
similar to the backbone undulation of swimming �sh, is modelled simply as a travelling wavy
plate. Based on the present results, it is found that the travelling wavy plate can be optimized
to create thrust and to minimize net power input.
It is necessary to compare the results of the travelling wavy plate obtained in this study

with some typical live �sh swimming. In the measurement of steadily swimming saithe and
eel, the movements of saithe and eel were observed as digitized outlines from �lm frames
[34]. The kinematic and morphometric quantities for saithe and eel are listed in Table I.
The overall �ow pattern and dynamics depend strongly on the phase speed c. As c increases,

the �ow structure, in particular around c=1, is signi�cantly altered. The mean force and
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Figure 16. Instantaneous streamline patterns for the travelling wavy wall with non-uniform amplitude
at t=T =0=4 (left column) and 1=4 (right column): (a) c=0:5; (b) 1.0; (c) 1.5; and (d) 2.0.

power are of primary concern and are analysed above for the understanding of �sh-like
locomotion. Of ultimate interest is the net power required for the locomotion, which is the
sum of the swimming power and the power required to overcome the total drag. This total
power yields a minimum for the net power required around c=1:2 approximately. As listed in
Table I, the ratio of the travelling wave speed and the swimming speed V=U is 1.21 and 1.43
approximately for steadily swimming saithe and eel. Thus, it is noteworthy that c=1:2–1.5
predicted numerically is the value adopted for travelling wave-like swimming motion of live
�sh in nature [34, 43].
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Figure 17. Instantaneous pressure contours for the travelling wavy wall with non-uniform amplitude at
t=T =0=4 (left column) and 1=4 (right column): (a) c=0:5; (b) 1.0; (c) 1.5; and (d) 2.0.

To elucidate e�ective propulsion of the travelling wavy plate, the amplitude of travelling
wave is another key factor. The travelling wavy plate with uniform amplitude and with in-
creasing amplitude is considered. As shown in Figures 11 and 12, although the wave amplitude
is constant, the results are still of helpful understanding the mechanism of the propulsion for
the travelling wavy plate. At larger amplitude, the wavy plate is propelled by a thrust; how-
ever, the thrust is at the expense of the swimming power PS. On the other hand, at smaller
amplitude, e.g. at Am=0:05, it is noted that, although the swimming power PS is small, it is
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Table I. Kinematic and morphometric quantities for saithe and eel [34].

Variable Unit Symbol Saithe Eel

Length m L 0.37 0.14
Period s T 0.278 0.276
Swim speed m s−1 u 1.14 0.28
Relative swim speed L s−1 U 3.09 2.0
Relative wave speed L s−1 V 3.74 2.86
Ratio of wave speed
and swim speed V=U 1.21 1.43
Maximum tail amplitude A=L 0.085 0.105

impossible to generate an e�ective thrust. Thus, based on our calculated results and previous
work [25, 26], when the amplitude is around Am=0:1, an e�ective propulsive motion for the
travelling wavy plate is reasonably generated with suitable power consumption. As listed in
Table I for steadily swimming saithe and eel, the maximum tail amplitudes A=L are 0.085 and
0.105 approximately and are consistent with the proposed amplitude Am=0:1 approximately.
Based on the kinematic data of steadily swimming �sh, the backbone undulation of �sh

swimming can be described as the travelling waves of lateral curvature with increasing am-
plitude [34]. As shown in Figures 15–17 for the increasing amplitude Am(x) in Figure 1(b),
it is reasonably predicted that the travelling wavy plate with non-uniform amplitude is of
bene�t to generating a thrust. Meanwhile, CDrms and CLrms for the travelling wavy plate with
non-uniform amplitude are smaller that these with uniform amplitude for the same c. This
feature is also helpful for �sh to perform steadily swimming.
Further, it is observed that the averaged wavelength of �sh swimming is the same as,

and less or higher than the �sh body-length for diverse �sh species [34]. Thus, some typical
calculations are carried out to deal with the e�ect of the relative wavelength � on forces and
�ow structures in Figures 13 and 14. Although the variations of the time-averaged drag force
and power consumption for di�erent � values considered here, as shown in Figures 13(a)
and (b), are somewhat small, the in�uence of � on the lateral force becomes signi�cant in
Figure 13(c). Based on these results, we can qualitatively analyse saithe and eel swimming
performance. Usually, steadily swimming saithe belongs to the regime of �61. Large lateral
force variation occurs for �61; this feature is helpful for saithe to perform fast-start manoeuver
swimming, in particular for C-type fast-start [45, 46]. Furthermore, swimming eel is obviously
in the regime of �¿1 [34] and mainly performs steadily swimming movements with relative
small CLrms in Figure 13(c). By comparing with the typical live �sh swimming, these results
predicted in the present study are of helpful understanding of �sh-like swimming mechanisms.

5. CONCLUDING REMARKS

The propulsive performance and vortex shedding of �sh-like travelling wavy plate are numer-
ically investigated by solving the two-dimensional incompressible Navier–Stokes equations
using the �nite element technique with the deforming-spatial-domain=stabilized space–time
formulation. The characteristics of �ow structure and vortex shedding near the travelling wavy
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plate are analysed to get into physical insights to the understanding of �sh-like swimming
mechanisms in terms of drag reduction and optimal propulsive e�ciency. The e�ects of some
typical parameters, including the phase speed, amplitude, relative wavelength of travelling
wavy plate, on the �ow structures and force behaviours are discussed. The �ow structures
and dynamics depend strongly on the phase speed c and the amplitude Am. The power yields
a minimum around c=1:2 approximately which is adopted for travelling wave-like swimming
motion of live �sh in nature. E�ective propulsive motion for the travelling wavy plate with
the amplitude around Am=0:1 is reached with suitable power consumption. The travelling
wavy plate with increasing amplitude is of bene�t to generating e�ectively propulsive per-
formance. These parameters predicted numerically are well consistent with the available data
obtained for the wave-like swimming motion of live �sh in nature. On the other hand, animal
locomotion is certainly far more complex and diverse than the simple model considered here.
Ideally, three-dimensional computation around a �exible body is desirable and is a target in
our further work.
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